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Estimating the resolution limit of the map equation in community detection
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A community detection algorithm is considered to have a resolution limit if the scale of the smallest modules
that can be resolved depends on the size of the analyzed subnetwork. The resolution limit is known to prevent
some community detection algorithms from accurately identifying the modular structure of a network. In fact, any
global objective function for measuring the quality of a two-level assignment of nodes into modules must have
some sort of resolution limit or an external resolution parameter. However, it is yet unknown how the resolution
limit affects the so-called map equation, which is known to be an efficient objective function for community
detection. We derive an analytical estimate and conclude that the resolution limit of the map equation is set by the
total number of links between modules instead of the total number of links in the full network as for modularity.
This mechanism makes the resolution limit much less restrictive for the map equation than for modularity; in
practice, it is orders of magnitudes smaller. Furthermore, we argue that the effect of the resolution limit often
results from shoehorning multilevel modular structures into two-level descriptions. As we show, the hierarchical
map equation effectively eliminates the resolution limit for networks with nested multilevel modular structures.
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I. INTRODUCTION

The ability to detect the community structure of networks
plays an important role in the analysis of complex systems.
Therefore, researchers have developed a suite of commu-
nity detection algorithms based on different principles or
heuristics [1–7]. While graph partitioning methods require the
number of modules as input, community detection methods,
such as modularity [1] and the map equation [3], intrinsically
identify the number of modules [7]. The widely used method
of modularity has been studied extensively [4,8–11], but less
is known about the inner workings of the flow-based and
information-theoretic map equation [12,13], despite its strong
performance on benchmark networks with densely connected
components when companioned with its search algorithm
Infomap [14,15]. Interestingly, the resolution limit [16], which
causes small modules to aggregate in larger modules in
modularity maximization and can lead to poor performance in
resolving actual communities of real networks, seems to have
an unnoticeable effect on the map equation [17]. Since any
global objective function for two-level community detection
must have a resolution limit [18], or an external resolution
parameter [19,20], it is important to understand how the map
equation succeeds at suppressing the effect of the resolution
limit. In this paper, we analytically derive the resolution limit of
the map equation and show why the map equation can resolve
a much wider range of module sizes than modularity can.
Although the community structure does not necessarily mean
the densely connected components, because the resolution
limit is about a detectability of densely connected components,
we focus on such a case.

The resolution limit is the consequential downside of meth-
ods that intrinsically identify a resolution scale in a network to
determine the number of modules. We conceptually illustrate
this fact with the two-level map equation applied to the global
road network. The map equation framework seeks an optimal

modular description of a random walker on the network.
This maximum compression is achieved by balancing the
description length of movements within and between modules.
With many small modules, representing city neighborhoods,
for example, the within-module description length is short at
the cost of a very long between-module description length.
Contrarily, with few large modules, representing continents,
for example, the between-module description length is short
at the cost of a very long within-module description length.
Consequently, the optimal two-level description length is
achieved by identifying modules of intermediate sizes, such
as neighborhoods aggregated into cities. If, however, only a
subnetwork was analyzed, such as the network of a single
city, modules would likely correspond to neighborhoods. In
contrast, with a so-called resolution limit-free method, and
given an external and fixed resolution parameter, the modules
identified in the subnetwork could also be identified in the
full network [19,20]. However, circumventing the resolution
limit does, of course, not in itself imply good performance
in resolving actual communities of real networks [17]. More-
over, for real networks the network itself must be used to
set the resolution parameter, and the method is no longer
resolution limit-free [18]. This example makes clear that no
two-level community detection method is resolution limit-free
in practice and that the resolution limit can arise because
a two-level method is applied to a multilevel structure with
nested modules. We argue that this case should be considered
unproblematic and show later that the natural solution is to use
a multilevel community detection method [21].

However, it is more problematic when a method aggregates
small modules in a plain modular structure. In this case,
a mechanistic understanding of how a method performs is
critical for successful application [16,22–24]. For example,
in a network with L links, Fortunato and Barthélemy [16]
showed that modularity may fail to detect a module of size
less than about

√
L links. This limit is a result of the intrinsic
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scale of the method [11,12]. Similarly, for a stochastic block
model with model selection based on the minimum description
principle, the corresponding block size was found to be about√

N nodes [25]. It has been experimentally verified that the
map equation has an upper limit of detectability; Infomap
splits nonclique structures with large diameters, such as strings
and lattices [12], but the resolution limit at which modules
cannot be fully resolved by the map equation is still unknown.
Unlike modularity and stochastic block models, which build
on configuration and generative models, respectively, the
map equation operates by compressing a modular description
of flow on the network. The different machinery makes it
especially interesting to better understand the effect of the
resolution limit on the map equation.

II. THE MAP EQUATION

To derive the limit and show how it depends on the network
structure, we begin by reviewing the machinery of the map
equation, which takes advantage of the fundamental duality
in information theory between finding regularities in data
and compressing the data [26]. For community detection, the
regularities naturally correspond to the modules in a network.

The purest form of a modular network consists of isolated
cliques of nodes. With a random walker as a proxy for
dynamics on a network, its movements to any node from any
other node in the clique occur with equal probability. That
is, node visits are independent and identically distributed.
Consequently, the map equation’s underlying code structure
is based precisely on the assumption of independent and
identically distributed node visits and module entries and exits
such that it can efficiently compress the description length of
the random walker’s trajectory in a modular network.

Specifically, given a partition M of nodes i assigned
to modules ı = 1,2, . . . ,m, the map equation measures the
per-step average description length L(M) of dynamics on a
network. The movements are encoded as follows: m module
codebooks, one for each module, map node visits within
modules and exits from modules to codewords for describing
movements within modules; and one index codebook maps
entries into modules to codewords for describing movements
between modules. The length of the codewords are optimally
derived from the rates of the corresponding movements they
describe. However, the explicit description with codewords
is not necessary for taking advantage of the duality between
finding regularities in data and compressing the data. Instead,
only the description length is required. Therefore, for a given
partition of the network, the map equation simply measures
the average codelength of each codebook and weights them by
how often they are used. In any case, the modular partition that
provides the most efficient compression of the random walker’s
movements also best captures the community structure with
respect to the dynamics on the network.

According to Shannon’s source coding theorem [26],
the average minimum description length of each codebook
directly from the associated probability distribution X of
the corresponding node-visit and module-transition rates in
terms of the Shannon entropy H (X) = −∑

i P (xi) log2 P (xi).
Then, the complete average description length L(M) is simply
the sum of the average description length of all codebooks

weighted by their rate of use. That is,

L(M) = q�H (Q) +
m∑

i=1

pi�H (Pi). (1)

The first term is the average description length of the index
codebook. Its rate of use q� = ∑m

i=1 qi� is the sum of
the entering rates qi� into each module i, and H (Q) =
−∑m

i=1(qi�/q�) log2(qi�/q�) is the average description
length of the index codebook given by the Shannon entropy
of the entering rates into the modules. The second term is the
average description length of the module codebooks. The rate
of use of module codebook i, pi� = qi� + ∑

α∈i pα , is the
sum of the exiting rate qi� and the visiting rates pα of all nodes
α in module i, and H (P i) = −(qi�/pi�) log2(qi�/pi�) −∑

α∈i(pα/pi�) log2(pα/pi�) is the average description length
of module codebook i. All rates are evaluated at stationarity,
such that for undirected networks the rate of entering qi� and
exiting qi� a given module i are the same. Using this equality
and expansion of Eq. (1) gives

L(M) = q� log2 q� − 2
m∑

i=1

qi� log2 qi�

+
m∑

i=1

pi� log2 pi� −
∑

α

pα log2 pα. (2)

Since the sum in the last term runs over all nodes, it does not
depend on the choice of partition.

For undirected, unweighted networks, the exit probability
qi� from module i and the rate of use pi� of module codebook
i can be expressed in terms of the number of links as

pα = kα

K
, (3)

qi� =
∑
β /∈i

∑
α∈i

Tβαpα = lout
i

K
, (4)

pi� = qi� +
∑
α∈i

pα = 2
li + lout

i

K
, (5)

where kα is the degree of node α, Tβα is the transition
probability that the random walker moves from node α to
node β, lout

i is the number of links which connect the nodes
in module i with nodes in other modules, li is the number
of links within module i, and K = 2L = ∑

i(2li + lout
i ) is the

total degree of the network. Substituting these expressions into
Eq. (2) gives

L(M) = 1

K

[
2C log2 2C − 2

m∑
i=1

lout
i log2 lout

i + K + 2C

+2
m∑

i=1

(
li + lout

i

)
log2

(
li + lout

i

) −
∑

α

kα log2 kα

]
,

(6)

where kα is the degree of the node α and C is the cut size [6,7],
i.e., 2C = ∑m

i=1 lout
i .
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III. THE RESOLUTION LIMIT OF THE MAP EQUATION

The resolution limit of the map equation depends on which
partitions are favored when the map equation is minimized. In
general, to minimize Eq. (6), we update the partition M = A
to a nearby partition M = B if �L(M) = L(B) − L(A) < 0.
From Eq. (6), we readily see that there is no resolution limit
caused by the total degree K , because it never changes the
sign of �L(M). Instead, the resolution limit must depend on
the cut size, which controls the only global term. In other
words, as long as the update conserves the cut size C, there
is no restriction from the global structure under an arbitrary
update. Note that the resolution limit of the stochastic block
model with model selection based on the minimum description
principle depends on the number of nodes in the network [25].
Therefore, the dependence on the cut size is not a result of the
information-theoretic nature of the map equation per se, but
rather its machinery to describe flow trajectories on networks.

To identify which partition updates will be accepted, we
denote an element in the two sums over modules in Eq. (6) by

Li = −lout
i log2 lout

i + (
li + lout

i

)
log2

(
li + lout

i

)
, (7)

and denote the total change over all modules before and after
the update by

R =
∑

i ′
Li ′(B) −

∑
i

Li(A). (8)

We now consider a local update where the cut size is decreased
by a small δ, such that C � δ > 0. Then

�L(M) = 1

K
[2(C − δ) log2 (2(C − δ)) − 2C log2 (2C)

+ 2R − 2δ] (9)

� 2

K
[−δ(2 + log2(e C)) + R], (10)

where e is the basis of natural logarithm. Therefore, any local
update should be accepted if

R � δ(2 + log2 (e C)). (11)

For updates that increase the cut size, i.e., δ < 0, on the other
hand, no local update will be accepted as long as the cut size
C is sufficiently large.

To identify the resolution limit, we parallel the analysis of
Ref. [16] and pinpoint a partition at the point where the map
equation can resolve small modules. As shown in Fig. 1, we
use a partition A with two modules M1 and M2 connected
with lint links between them, and l13 and l23 links, respectively,
with the rest of the network M3. Note that M3 may consist of
many modules, so that Fig. 1 represents a completely general
situation. In partition B, the two modules M1 and M2 are
merged into a single module M12. We then consider an update
from partition A to partition B. From Eq. (8) we have

R = − lout
3 log2 lout

3 + lout
2 log2 lout

2 + lout
1 log2 lout

1

+ (
l1+lout

1 +l2+lout
2 −lint

)
log2

(
l1+lout

1 +l2 + lout
2 − lint

)
− (

l2 + lout
2

)
log2

(
l2 + lout

2

) − (
l1 + lout

1

)
log2

(
l1 + lout

1

)
,

(12)

FIG. 1. (Color online) A schematic picture for the greedy update
of two modules M1 and M2. Note that M3 may consist of many
modules.

where lout
3 = l13 + l23. We now consider the extreme case in

which lint = 1, i.e., δ = 1, and set the sizes of two modules
equal, i.e., l1 = l2 = lc, because it maximizes R in 0 < l2 �
l1 for a fixed l1. We also set l13 = l23 = h. Then, using the
assumption that lc + h � 1, we have

R �1 + 2[lc + (1 + h) log2(1 + h) − h log2 h]

− log2 [e(lc + h)] . (13)

Assuming that h = 1 and using Eq. (11), we obtain the
inequality for the resolution limit

4lc

lc + 1
� C, (14)

where we have dropped a small constant factor 8/e2 � 1.08
on the left-hand side, in order to highlight the basic scal-
ing. Assuming that h � 1, (1 + h) log2(1 + h) − h log2 h �
log2 [e(1 + h)], we instead have

(1 + h)24lc

2(lc + h)
� C. (15)

Accordingly, the map equation fails to detect a module with
less than lc links whenever the cut size C satisfies the above
conditions, provided that the module is adjacent to modules
of equal or smaller size. Note that Eqs. (14) and (15) apply
only when evaluated close to the global minimum of the
map equation. Otherwise, they are only practical restrictions
during an optimization process. Furthermore, with l1 = l2 = l

and l13 = l23 = h in Fig. 1, the following two examples are
worth mentioning. First, if lint = 0, �L(M) = 4l/K > 0, and
disconnected modules never merge with other modules, as they
should not. Second, if M3 is a single module, �L(h = 1) > 0
for l � 2 and ∂�L/∂h > 0, and �L(h → ∞) = 4(l − 1)/K
for any l, such that the map equation can detect modules of
arbitrary size with l � 2.

To illustrate that the resolution limit of the map equation
is much smaller in practice and less restrictive than it is for
modularity, we consider a simple modular network shown
in the inset of Fig. 2. The network consists of a ring of
m modules, each forming a clique with n nodes. For this
network, C = m. The resolution limit of the map equation
is in practice many orders of magnitudes smaller than the
resolution limit of modularity. For clique size 6, for example,
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FIG. 2. (Color online) Detectable region of m modules, each
forming a clique with n nodes. In the inset network, n = 5 and m = 8.
The solid line is the resolution limits of the map equation according
to Eq. (14), while the dashed line is the resolution limit of modularity,
m = n(n − 1) + 2 [16].

the map equation can resolve modules in a ring network that
is millions of times larger. If this intrinsic scale of resolution
set by using one node codeword per step is not appropriate
for the problem at hand and a multilevel solution is not an
option, the scale can be modified by the Markov time, which
effectively works as an intrinsic resolution parameter [11,12].
More importantly, the resolution limit does not depend on the
number of links in the network, as for modularity, but on the
cut size. This feature makes the resolution limit less restrictive
with important performance implications.

IV. THE RESOLUTION LIMIT OF THE HIERARCHICAL
MAP EQUATION

We now turn to the hierarchical map equation [21], the
multilevel generalization of the two-level method described
above. For example, the three-level map equation can consider
movements within and between supermodules, modules in
supermodules, and nodes in modules. In the general case,
this hierarchy of nested modules can be extended locally
and independently between branches as long as it reduces
the minimal description length. Because modification of a
partition at a certain level of a branch only influences the
description length of movements within and between affected
modules, �L(M) for the hierarchical map equation turns
out to be analogous to that of the two-level map equation
(see Sec. 1 of the Appendix for details). However, and
importantly, the resolution limit now depends on the structure
of the associated supermodule rather than on the structure
of the full network. As a result, in the absence of a nested
multilevel modular structure for the hierarchical map equation
to capitalize on, the resolution limit of the two-level method
remains. However, with a sufficiently pronounced nested
multilevel modular structure, the hierarchical map equation
will resolve all modules (see Secs. 2 and 3 of the Appendix
for details). A similar effect is true also for methods based
on generative models. For example, the typical detectable
block size decreases from ∼√

N to ∼ln N for a hierarchi-
cal generalization of the stochastic block model mentioned
above [27]. In analogy with the two-level analysis, since the
hierarchical map equation determines the number of levels
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FIG. 3. (Color online) Detected sizes of modules for each Sier-
pinski triangle of different size l with the two-level method (circular
points) and the multilevel method (cross points). For example, the
two-level method detects modules of 3 links and 12 links when the
hierarchy of the Sierpinski triangle is three. The Sierpinski triangles
up to three levels are illustrated at the top. The boundary of the shaded
region shows the resolution limit of the module size obtained with
Eq. (14).

of each branch intrinsically based on the network structure
rather than with an external parameter, it is not resolution
limit-free in the sense that analysis of the full network or
a subnetwork necessarily would give the same result [20].
Nevertheless, as long as the network has a pronounced nested
multilevel modular structure, modules at the finest level will be
resolved.

To demonstrate the performance of the hierarchical map
equation, we use Sierpinski triangles, as shown in the inset
of Fig. 3. Using the code distributed at [28], we identify
modules in the Sierpinski triangles of different sizes with the
two-level and multilevel methods. For the multilevel method,
we focus on the results at the finest level. While the result
of the two-level method is harmed by the resolution limit,
the multilevel method detects the triangles at the lowest level
for any network size. Also, cliques in a ring of cliques, as
illustrated in Fig. 2, are resolved for any network size (see
Sec. 3 of the Appendix for analytical derivation). Furthermore,
as we see in the next section, the relaxed resolution limit can
be observed in real networks as well. Therefore, we conclude
that the hierarchical map equation effectively eliminates the
resolution limit for networks with nested multilevel modular
structures.

V. EFFECTS OF THE RESOLUTION LIMIT: MODULE
SIZE DISTRIBUTIONS OF REAL NETWORKS

In this section, we show that the relaxed resolution limit
can be observed in analysis of real networks. Figure 4 shows
the module size distributions, which we obtained by running
Infomap [28] on the data distributed at [29,30]. The size of
each network and the total number of detected modules are
listed in Table I. Here size refers to the number of nodes
in a module instead of the number of internal links, but
the effect of the resolution limit is nevertheless clear. The
multilevel method detects many more smaller modules [31].

012809-4



ESTIMATING THE RESOLUTION LIMIT . . . PHYSICAL REVIEW E 91, 012809 (2015)

Module size (number of nodes)

N
um

be
r 

of
 m

od
ul

es

Module size (number of nodes)

N
um

be
r 

of
 m

od
ul

es

Module size (number of nodes)

N
um

be
r 

of
 m

od
ul

es

Module size (number of nodes)

N
um

be
r 

of
 m

od
ul

es

Module size (number of nodes)

N
um

be
r 

of
 m

od
ul

es

Module size (number of nodes)

N
um

be
r 

of
 m

od
ul

es

FIG. 4. (Color online) Module size distributions of (a) the col-
laboration network of authors of scientific papers from DBLP
computer science bibliography [29,33], (b) the copurchasing network
of products in Amazon.com [29,33], (c) the network of citations
in arXiv’s High Energy Physics-Theory (hep-th) section [34], (d)
the friendship network on Facebook [35], (e) the road network of
California [36] in the USA, and (f) the bipartite rating network
of products in Amazon.com [37] in the log-log scale with partial-
logarithmic binning. The circular points represent the result of the
two-level method and the cross points represent the result in the
finest level of the multilevel method. Note that the size of a module
here does not indicate the number of internal links, but the number of
nodes within the module.

Note that the Amazon rating network is a bipartite network; the
random walker in a bipartite network has periodic stationary
states by nature, but we assume the nonperiodic solution
with visit rates given by Eq. (3) and all derived results
apply. For some of these networks, such as the arXiv citation
network and the Facebook friendship network, the effect of the
resolution limit on the two-level method looks small, because
these networks are dense compared to the other networks

and the depth of the hierarchy in the multilevel method is
shallow.

We can estimate the theoretical resolution limit by estimat-
ing the cut size in Eq. (14). The cut size is bounded below by
the number of modules detected by the multilevel method and
above by the number of links in the network. For the DBLP
network, these numbers are 29 252 and 1 049 866, respectively,
and the left-hand side of Eq. (14) in the main text falls between
these values for lc ≈ 11 [32].

As Fig. 4 shows, because real networks have modules of
varying strength, the resolution limit does not force a clear
separation between detected and undetected module sizes. For
real networks, the theoretical resolution limit is instead the
point at which we can expect deviations between a two-level
method and a multilevel method.

VI. CONCLUSION

In summary, we have revealed the inner workings of the map
equation and estimated its resolution limit [Eq. (14)]. While
the number of links in the network determines the resolution
limit of the configuration-model-based modularity, the number
of links between modules instead determines the resolution
limit of the flow-based map equation. This less restrictive
dependence contributes to the performance difference between
the methods. Even if the resolution limit in practice is many
orders of magnitudes smaller than it is for modularity, for
sufficiently large networks the map equation will eventually
be affected, as any global two-level objective function is in
practice. We argue that the natural solution is to use the
hierarchical map equation, and exemplify both with synthetic
and real networks. We conclude that multilevel methods or
Markov time sweeping should always be the first choice for
simplifying large networks, but that better tools are needed for
efficiently working with such structures. Finally, we emphasize
that coping with the resolution limit does not in itself imply
good performance in resolving actual communities of real
networks. It is still an open question as to what structures
can be detected in conventional networks and when possibly
higher-order information is necessary.
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TABLE I. Community sizes in real networks obtained with the two-level and the multilevel map equation.

No. of communities No. of communities
No. of nodes No. of links (two-level) (multilevel)

DBLP 338 029 1 049 866 16 450 29 252
Amazon (copurchase) 334 863 925 872 15 685 34 802
Facebook 63 731 1 269 502 2 268 2 819
arXiv_hep-th 48 239 352 807 1 332 2 247
California 1 965 206 2 766 607 82 322 344 485
Amazon (rating) 3 376 972 5 838 041 350 419 480 810
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APPENDIX: THE HIERARCHICAL MAP EQUATION

1. General argument on partitioning

Here we explain the details of the hierarchical map
equation [21]. Again, we restrict ourselves to undi-
rected, unweighted networks. Analogously to the two-level
method, the quality function of the multilevel method is

defined by

L(M) =q�H (Q) +
m∑

i=1

qi�H (Qi) +
m∑

i=1

mi∑
j=1

qij�H (Qij )

+ · · · +
∑

ij,...,k

pij,...,k�H (Pij,...,k), (A1)

with

H (Q) = −
m∑

i=1

qi�

q�

log2
qi�

q�

, (A2)

m∑
i=1

H (Qi) = −
m∑

i=1

qi�

qi�
log2

qi�

qi�
−

m∑
i=1

mi∑
j=1

qij�

qi�
log2

qij�

qi�
, (A3)

∑
ij,...,k

H (Pij,...,k) = −
∑

ij,...,k

qij,...,k�

pij,...,k�
log2

qij,...,k�

pij,...,k�
−

∑
ij,...,k

∑
α∈ij,...,k

pα

pij,...,k�
log2

pα

pij,...,k�
, (A4)

where qi1i2,...,ix� is the probability that a random walker exits from the module ix in the xth level and qi1i2,...,ix� is the probability
that the random walker stays within the module ix and exits from it. As we mentioned in the main text, the probabilities of
entering and exiting a module are equal for undirected networks. Thus, we replaced the entering probability with the exiting
probability in order to simplify the notation. As before, pα is the probability that the random walker visits node α. Following
what we did for the two-level method, we can write (A1) as

L(M) = q� log2 q� +
∑
i1

qi1� log2 qi1� +
∑
i1i2

qi1i2� log2 qi1i2� + · · · +
∑

i1i2,...,ik

qi1i2,...,ik� log2 qi1i2,...,ik� −
∑

α

pα log2 pα

− 2

⎛
⎝∑

i1

qi1� log2 qi1� +
∑
i1i2

qi1i2� log2 qi1i2� + · · · +
∑

i1i2,...,ik

qi1i2,...,ik� log2 qi1i2,...,ik�

⎞
⎠ . (A5)

We then consider the difference of the map equation at an update. The modification of the partition at a certain level does not
affect the partitions in higher and lower levels. It only alters the description length of movements between the modules of the
modified level, as well as the description length of movements within the modified module (it can also be regarded as movements
between submodules) and exiting from it. Therefore, the difference of the map equation from an update in the xth level is

�L(M) = qB
i1i2,...,ix−1� log2 qB

i1i2,...,ix−1� − qA
i1i2,...,ix−1� log2 qA

i1i2,...,ix−1�

− 2

⎛
⎝∑

i ′x

qB
i1i2,...,i ′x�

log2 qB
i1i2,...,i ′x�

−
∑
ix

qA
i1i2,...,ix�

log2 qA
i1i2,...,ix�

⎞
⎠

+
⎛
⎝∑

i ′x

qB
i1i2,...,i ′x� log2 qB

i1i2,...,i ′x� −
∑
ix

qA
i1i2,...,ix� log2 qA

i1i2,...,ix�

⎞
⎠ , (A6)

which is analogous to that of the two-level method,

�Ltwo-level(M) = qB
�

log2 qB
�

− qA
�

log2 qA
�

− 2

(
m′∑

i ′=1

qB
i ′� log2 qB

i ′� −
m∑

i=1

qA
i� log2 qA

i�

)
+

(
m′∑

i ′=1

pB
i ′� log2 pB

i ′� −
m∑

i=1

pA
i� log2 pA

i�

)
. (A7)

Instead of q� in the two-level method in the above equation,
we have

qi1i2,...,ix−1� = qi1i2,...,ix−1� +
∑
ix

qi1i2,...,ix� (A8)

for the multilevel method; hence, other than the extra term
qi1i2,...,ix−1� in qi1i2,...,ix−1�, the mathematical structure of the

hierarchical map equation is analogous to that of the two-level
method. That is, the difference between these methods is the
effective network size in each update process, as exemplified in
Fig. 5 for the Sierpinski triangle. The above result can also be
interpreted as follows. The resolution limit of a subgraph H in a
graph G remains the same in a subgraph S, where H ⊂ S ⊂ G,
as long as the subgraph S strictly includes the supermodule
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Two-level method Multilevel method

FIG. 5. (Color online) Effective network sizes (the region encir-
cled with the dashed line) for the evaluation of partitioning of the nine
nodes at the top of the Sierpinski triangle (the nodes of open circles) in
the two-level method and in the finest level of the multilevel method.
While the effective network size is the size of the whole network in
the two-level method, in the finest level of the multilevel method, it
is of the supermodule plus the links lying between the supermodule
and the rest of the network.

containing the subgraph H , provided that the structure of the
supermodule is conserved in the graph G and the subgraph S.
This property is somewhat similar to a mathematical definition
of a “resolution limit-free method” in Ref. [20]. Note, however,
that the hierarchical map equation is not a resolution limit-free
method in their sense, because the hierarchical structure may
change for a particular choice of the subgraph S.

As we did for the two-level method, we can write �L(M) of
the multilevel method in terms of the number of links, by using
the explicit form of the stationary distribution of the random
walker. The elements of the objective function reads

qi1i2,...,ix� = lout
i1i2,...,ix

K
, (A9)

qi1i2,...,ix� = 2

K

(
li1i2,...,ix + lout

i1i2,...,ix

)
. (A10)

Substituting them into Eq. (A6), after some algebra, we obtain

K

2
�L(M) = (

lB
i1i2,...,ix−1

+ l
B,out
i1i2,...,ix−1

)
log2

(
lB
i1i2,...,ix−1

+ l
B,out
i1i2,...,ix−1

) − (
lA
i1i2,...,ix−1

+ l
A,out
i1i2,...,ix−1

)
log2

(
lA
i1i2,...,ix−1

+ l
A,out
i1i2,...,ix−1

)
− 2

(
lB
i1i2,...,ix−1

− lA
i1i2,...,ix−1

) + Ri1i2,...,ix−1 , (A11)

where

Ri1i2,...,ix−1 =
∑
i ′x

Li1i2,...,i ′x (B) −
∑
ix

Li1i2,...,ix (A), (A12)

Li1i2,...,ix (M) = −l
M,out
i1i2,...,ix

log2 l
M,out
i1i2,...,ix

+ (
lM
i1i2,...,ix

+ l
M,out
i1i2,...,ix

)
log2

(
lM
i1i2,...,ix

+ l
M,out
i1i2,...,ix

)
. (A13)

Denoting Ci1i2,...,ix ≡ li1i2,...,ix−1 + lout
i1i2,...,ix−1

and letting δ be the
difference of Ci1i2,...,ix under an update, we have

K

2
�L(M) � −δ

(
2 + log2

(
e Ci1i2,...,ix

)) + Ri1i2,...,ix−1 ,

(A14)

where we assumed δ  lii1 i2 ,...,x−1 . Equation (A14) corresponds
to Eq. (10) in the main text. With this correspondence, the same
argument holds for the multilevel method as for the two-level
method. Since Eq. (A14) depends only on the structure of a
subnetwork instead of the full network, the multilevel method
has higher resolution than the two-level method, provided that
the network has a nested multilevel modular structure.

2. Generation of supermodules

We showed that the existence of the nested structure of
modules in the multilevel method of the map equation enables
us to resolve smaller modules than the two-level method. When
the multilevel method generates only two levels, however, the
multilevel method is equivalent to the two-level method, and
the resolution limit would be kept the same. As we did for the
update of partition in the two-level method in the main text, we
can evaluate the generation of a higher level by comparing the
partitions with and without a supermoudule. For simplicity,
we compare a two-level partition and a three-level partition.

The objective functions of the map equation with two-level
structure L(M2) and three-level structure L(M3) read

L(M2) =q(2)
�

log2 q(2)
�

− 2
m′∑

i ′=1

q
(2)
i ′� log2 q

(2)
i ′�

+
m′∑

i ′=1

p
(2)
i ′� log2 p

(2)
i ′� −

∑
α

pα log2 pα, (A15)

L(M3) =q(3)
�

log2 q(3)
�

− 2
m∑

i=1

q
(3)
i� log2 q

(3)
i� +

m∑
i=1

p
(3)
i� log2 p

(3)
i�

− 2
m∑

i=1

mi∑
j=1

q
(3)
ij�

log2 q
(3)
ij�

+
m∑

i=1

mi∑
j=1

p
(3)
ij� log2 p

(3)
ij�

−
∑

α

pα log2 pα. (A16)

We consider the difference of the description length given
by the map equation when we introduce a supermodule s

in addition to the two-level partition, forming a three-level
partition. In the following, we denote the label of a module in
the three-level structure by i and the label of a submodule in
module s by j [see Fig. 6(a)]. Based on Eqs. (A15) and (A16),
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FIG. 6. (Color online) (a) An example of a hierarchical community structure in a network. (b) Phase diagram of the accepted and rejected
regions for the generation of a higher level. The shaded region (A28) of the upper-right corner is invalid.

we have

L(M3) − L(M2) = q(3)
�

log2 q(3)
�

− 2q(3)
s� log2 q(3)

s� + p
(3)
s� log2 p

(3)
s� − 2

ms∑
j=1

q
(3)
sj�

log2 q
(3)
sj�

+
ms∑
j=1

p
(3)
sj� log2 p

(3)
sj�

−
⎛
⎝q(2)

�
log2 q(2)

�
− 2

ms∑
j=1

q
(2)
j�

log2 q
(2)
j�

+
ms∑
j=1

p
(2)
j� log2 p

(2)
j�

⎞
⎠

= q(3)
�

log2 q(3)
�

− q(2)
�

log2 q(2)
�

− 2q(3)
s� log2 q(3)

s� + p
(3)
s� log2 p

(3)
s�, (A17)

where

q(2)
�

=
m∑

i=1

qi� − qs� +
ms∑
j=1

qsj�, q(3)
�

=
m∑

i=1

qi�. (A18)

Note here that q
(3)
sj�

= q
(2)
j�

and p
(3)
sj� = p

(2)
j�. When Eq. (A17) is negative, the construction of an additional level is accepted,

i.e., the three-level description gives a shorter codelength.
For undirected networks, Eq. (A17) can be written in terms of the number of links as follows:

L(M3) − L(M2)

=
∑

i l
out
i

K
log2

∑
i l

out
i

K
−

(∑
i l

out
i + 2ls

K

)
log2

(∑
i l

out
i + 2ls

K

)
− 2

lout
s

K
log2

lout
s

K
+

(
2
ls + lout

s

K

)
log2

(
2
ls + lout

s

K

)

= 2

K

[
C3 log2 C3 − (C3 + ls) log2 (C3 + ls) − lout

s log2 lout
s + (lout

s + ls) log2

(
lout
s + ls

) + lout
s

]
, (A19)

where ls , lout
i , and C3 = ∑

i l
out
i /2 are variables of the coarsest

level in the three-level partition, which are the number of links
within the module s, the number of links between nodes within
module i and nodes outside the module, and the cut size of the
network, respectively.

As in the main text, we introduce

L(x,y) = −x log2 x + (x + y) log2(x + y) (x > 0 and y > 0),
(A20)

which has the following properties:

∂L(x,y)

∂x
= log2

(
1 + y

x

)
> 0, (A21)

L(x − y,y) = −L(x, − y) for x � y, (A22)

L(ax,ay) = ay log2 a + aL(x,y) for a > 0. (A23)

Using L(x,y), we can recast Eq. (A19) as

K

2
[L(M3) − L(M2)] = L

(
lout
s ,ls

) − L(C3,ls) + lout
s . (A24)

Therefore, the transition to the three-level structure occurs
when the following condition is satisfied:

lout
s < L(C3,ls) − L

(
lout
s ,ls

)
. (A25)

The right-hand-side of (A25) is always greater than or equal
to zero, since L(x,y) has monotonicity (A21) and C3 � lout

s .
If the partition at the coarsest level is a bisection, it would give
C3 = lout

s , which never satisfies Eq. (A25).
In terms of the cut size in the two-level partition C2 =

C3 + ls , Eq. (A25) can also be written as

lout
s < L(C2 − ls ,ls) − L

(
lout
s ,ls

)
, (A26)
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or using (A22) and (A23), we have

0 > η + L(1, − ζ ) + L(η,ζ ), (A27)

where ζ = ls/C2 and η = lout
s /C2. The phase diagram of the

generation of a higher level determined by Eq. (A27) is shown
in Fig. 6(b). Note that the cut size C2 is bounded below by
ls + lout

s � C2; i.e.,

ζ + η � 1. (A28)

The boundary in (A27) never intersects with the boundary of
the invalid region (A28). This observation can be confirmed
from Eq. (A25), which never satisfies the inequality at the
boundary of the invalid region lout

s = C3 = C2 − ls .
Notice that the analysis here is not the whole story of the

optimization of the hierarchical partitioning. The path for
optimization can be very complex, because the generation
of the deeper hierarchy and the update of partition in each
level occur simultaneously. Roughly speaking, while dense
networks tend to have large modules with shallow hierarchies,
the hierarchies of sparse networks tend to be deep, i.e., the
multilevel method has very high resolution. This behavior can
be confirmed in a synthetic graph (Sec. 3 of this appendix ), as

well as in real networks (Sec. V). As we exemplify in the next
section, however, we can use the result here in order to check
whether an obtained partition is truly the optimal solution, or
can be improved at least by adding another level.

3. Multilevel solution of a ring of cliques

In the previous section, we observed in Fig. 6(b) that the
generation of higher levels will not be accepted when the
network is only weakly modular. In this section, we exemplify
with a ring of cliques that a very modular network indeed has
a nested multilevel structure and that the modules of the finest
levels are always resolved.

We set the number of cliques equal to m and refer to the
number of links within a module as l, as in the main text.
We also denote the number of modules in each level as mg

(g = 1,2,, . . . ,d − 1). In the case of a ring of cliques, the
number of links connected to nodes outside of a module is
two at any level. Moreover, due to the symmetry of the graph,
the sizes of modules for the same level must be equal. With
the d-level map equation, we have the following objective
function:

KL(M) = 2m1 log2(2m1) + m1(2 + 2m2) log2(2 + 2m2) + m1m2(2 + 2m3) log2(2 + 2m3) + · · ·

+
d−1∏
g=1

mg[2 + (2l + 2)] log2 (2 + (2l + 2)) − 2

⎛
⎝2m1 + 2m1m2 + · · · + 2

d−1∏
g=1

mg

⎞
⎠ −

∑
α

ka log2 kα, (A29)

K

2
L(M) = m1 log2 m1 +

d−1∑
k=2

k−1∏
g=1

mg(1 + mk) log2(1 + mk) +
d−1∏
g=1

mg[(l + 1) + (l + 2) log2(l + 2)] − 1

2

∑
α

ka log2 kα. (A30)

Also, since the number of finest modules m is fixed, we have the constraint

m =
d−1∏
g=1

mg. (A31)

Hence, the optimal solution is obtained by minimizing (A30) subject to (A31). Although the number of modules of each level
mg is an integer, if we approximate it as a continuous variable, the present problem becomes equivalent to solving the following
Lagrange multiplier:

δ

⎧⎨
⎩m1 log2 m1 +

d−1∑
k=2

k−1∏
g=1

mg(1 + mk) log2(1 + mk) +
d−1∏
g=1

mg[(l + 1) + (l + 2) log2(l + 2)] − λ

⎛
⎝d−1∏

g=1

mg − m

⎞
⎠

⎫⎬
⎭

= δ

⎡
⎣m1 log2 m1 +

d−1∑
k=2

k−1∏
g=1

mg(1 + mk) log2(1 + mk) +
d−1∏
g=1

mg
(l,λ) + λm

⎤
⎦ = 0, (A32)

where we set


(l,λ) ≡ (l + 1) + (l + 2) log2(l + 2) − λ. (A33)

After some straightforward calculations, we obtain the value of mg as a function of mg+1 as follows:

m1 = em2−1

1 + m2
,

mg = emg+1−1

1 + mg+1
− 1 for 2 � g � d − 2,

md−1 = 2


e
− 1. (A34)
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FIG. 7. (Color online) The plot y = f (x) in Eq. (A35).

The value of λ in 
(l,λ) is determined by the constraint of m,
the total number of modules. Hence, the number of modules
at the deepest level in a supermodule md−1 is determined by

m, d, and l. In the actual multilevel method, the number of
hierarchal levels d is adjusted so that the average codelength
is minimized.

We now estimate the values of md−1. Defining

f (x) = ex−1

1 + x
− 1, (A35)

we have f (3) = 0.85, f (4) = 3.02, and f (5) = 8.10 [see
Fig. 7 for the shape of f (x)]. First, we readily see that
md−1 � 3 is not the choice for a large ring, because the number
of modules in a higher level decreases in such cases, which
restricts the value of m in (A31). If md−1 � 5 and we assume
that there are more than two levels, m1 would be very large.
However, this is unlikely the optimal, because in the phase
diagram of Fig. 6(b), when lout

s = 2 and m1 is large enough,
there must be a supermodule of a higher level which makes
the total description length shorter. Therefore, the number of
modules inside of a supermodule tends to be close to four in the
ring of cliques. Accordingly, every clique is always detectable
with the multilevel method no matter how large the size of the
ring is.
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