
PHYSICAL REVIEW E 93, 032309 (2016)

Efficient community detection of network flows for varying Markov times and bipartite networks

Masoumeh Kheirkhahzadeh,1,2 Andrea Lancichinetti,2 and Martin Rosvall2,*

1Department of IT and Computer Engineering, Iran University of Science and Technology, Teheran, Iran
2Integrated Science Lab, Department of Physics, Umeå University, SE-901 87 Umeå, Sweden

(Received 4 November 2015; revised manuscript received 17 January 2016; published 9 March 2016)

Community detection of network flows conventionally assumes one-step dynamics on the links. For sparse
networks and interest in large-scale structures, longer timescales may be more appropriate. Oppositely, for large
networks and interest in small-scale structures, shorter timescales may be better. However, current methods for
analyzing networks at different timescales require expensive and often infeasible network reconstructions. To
overcome this problem, we introduce a method that takes advantage of the inner workings of the map equation and
evades the reconstruction step. This makes it possible to efficiently analyze large networks at different Markov
times with no extra overhead cost. The method also evades the costly unipartite projection for identifying flow
modules in bipartite networks.

DOI: 10.1103/PhysRevE.93.032309

I. INTRODUCTION

Researchers often represent interactions between com-
ponents in social and biological systems with networks of
nodes and links, and use community-detection algorithms to
better understand their large-scale structure. Depending on
the system under study and the particular research question,
the scale of interest varies. For an initial investigation, a
bird’s-eye-view of the entire system may be most appropriate,
while a more detailed study most likely will require a finer
scale. Methods for extracting hierarchically nested modules at
different scales do exist [1,2], but there may still be a need for
identifying large-scale structures at specific scales [3,4].

When the links represent network flows, modeling the
dynamics at different Markov times is a natural way to
capture the large-scale structures at different scales [5]. In this
approach, the original network is rebuilt such that one flow step
along a link of the rebuilt network corresponds to the desired
number of flow steps on the original network. However, this
approach is inefficient for large networks, because the rebuilt
network can be dense to the degree that storage and further
analysis is infeasible. To overcome this problem, we introduce
an efficient method that operates directly on the original
network. The method takes advantage of the mechanics of the
information-theoretic community-detection method known as
the map equation [6] with no extra overhead cost.

Integrating the Markov time scaling with the map equation
also allows for efficient community detection of network flows
in bipartite networks. Most approaches for bipartite networks
build on configuration models, in particular modularity [7–9],
or stochastic block models [10,11]. An alternative is to
project the bipartite network into a unipartite network and
perform the analysis on the unipartite network. For most
assortative networks, such a projection does not destroy any
valuable information [12]. However, the projection can give
an overload of links and be infeasible for large networks.
Therefore, the analysis of network flows derived from bipartite
networks, such as unipartite collaboration networks obtained
from projections of author-paper bipartite networks [13], can

*martin.rosvall@umu.se

greatly benefit from evading the projection into overly dense
networks. With the map equation for varying Markov times,
we can achieve this because a bipartate to unipartite projection
corresponds to doubling the Markov times.

We begin by explaining the generalization of the Map
equation to different Markov times and then introduce the
bipartite generalization.

II. NETWORK FLOW MODULES AT DIFFERENT
MARKOV TIMES

The map equation measures how well a partition of nodes
in possibly nested and overlapping modules can compress a
description of flows on a network. Because compression is dual
to finding regularities in the data [14], the modules that give the
best compression also are best at capturing the regularities in
the network flows. The network flows can be explicit flow data,
such as the number of passengers traveling between cities, or
be modeled by a random walker guided by the constraints set
by a directed, weighted network, such as information flows on
a citation network.

In the standard formulation of the map equation, a random
walker is modeled as a discrete-time Markov process and its
position in the network is encoded at every transition. In this
way, the transition rate of a random walker as well as the
encoding rate is 1. Specifically, the discrete-time transition
matrix associated with the network, TD, labeled with subscript
D for discrete, induces flows between nodes visited with
probability p by the discrete-time Markov process,

pk+1 = pkTD. (1)

Schaub et al. generalized the map equation to different
Markov times by using the corresponding continuous-time
Markov process,

ṗ = −p(I − TD), (2)

with I for the identity matrix [5]. The continuous-time
Markov process has exponentially distributed holding times
at each node that correspond to Poisson-distributed transitions
at average rate 1 [3,15]. With uniform time steps t , the
continuous-time Markov process is therefore equivalent to the

2470-0045/2016/93(3)/032309(7) 032309-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.032309


KHEIRKHAHZADEH, LANCICHINETTI, AND ROSVALL PHYSICAL REVIEW E 93, 032309 (2016)

discrete-time process,

pk+1 = pkTC(t), (3)

with the continuous-time transition matrix,

TC(t) = e−t(I−TD) =
∞∑
i=0

t ie−t

i!
T i

D, (4)

labeled with subscript C for continuous. By using this
transition matrix, Schaub et al. showed the effects of shorter
and longer Markov times t between encodings [5]. Shorter
Markov times than 1 mean that the average transition rate of a
random walker is lower than the encoding rate of its position,
such that the same node will be encoded multiple times in
a row. As a result, the map equation will favor more and
smaller modules. Oppositely, longer Markov times mean that
the average transition rate is higher than the encoding rate,
such that not every node on the trajectory will be encoded, and
the map equation will favor fewer and larger modules. When
a two-level solution is preferred over hierarchically nested
modules of different sizes, changing the Markov time can in
this way highlight salient flow modules at specific scales [5].

A. The map equation for varying Markov times

In detail, for a given partition of nodes into modules,
the original map equation for a discrete process at Markov
time 1 measures the per-step minimum modular description
length of flows on the network. For unique decoding of
the flow trajectory from one step to another, the modular
coding scheme is designed to only require memory of the
previously visited module and not the previously visited node.
The map equation therefore has one or, for hierarchically
nested modules, more index codebooks for encoding steps
between modules and modular codebooks for encoding steps
within modules. Minimizing the map equation over all possible
network partitions therefore gives the assignments of nodes
into modules that best capture modular flows on the network.
That is, the map equation can identify modules in which flows
stay for a relatively long time.

As input, the map equation takes the ergodic node visit-rates
pα , module exit-rates qi�, and module enter-rates qi� of the
flow trajectory for nodes α = 1 . . . n and modules i = 1 . . . m.
It estimates the average code length of each codebook from
the Shannon entropy, which sets the theoretical lower limit
according to Shannon’s source code theorem [14]. With pi� =
qi� + ∑

α∈i pα for the total rate of use of module codebook
i, the per-step average code length of events P i in module i is

H (P i) = −qi�

pi�
log

qi�

pi�
−

∑
α∈i

pα

pi�
log

pα

pi�
. (5)

Similarly, with q� = ∑m
i=1 qi� for the total rate of use of the

index codebook in a two-level description, the per-step average
code length of module enter-events Q is

H (Q) = −
m∑

i=1

qi�

q�

log
qi�

q�

. (6)

With modular map M and the rate of use of each codebook
taken into account, the map equation takes the form

L(M) = q�H (Q) +
m∑

i=1

pi�H (Pi). (7)

For an efficient generalization of the map equation to
Markov times other than 1, we first linearize in t and TD

the continuous-time transition matrix TC(t) in Eq. (4). For
t < 1, (1 − t)I + tTD is a valid approximation, but we are also
interested in Markov times greater than 1. Thus, we consider
the linearized transition matrix,

T̃C(t) =
{

(1 − t)I + tTD t < 1
tTD t � 1 , (8)

which captures Markov times below 1 with self-links and
Markov times above 1 with transition rates proportional to
the average rate of the underlying Poisson process. Moreover,
at Markov time 1 it recovers the discrete-time transition matrix
in Eq. (1).

This linearization also has an appealingly simple effect on
the map equation. For Markov time t , all node visit rates pα

remain the same, since the relative visit rates at steady state
do not depend on how often the visits are sampled. However,
the module exit-rates qi� and module enter-rates qi� change
linearly with the Markov time, since the number of random
walkers that moves along any link between nodes during time
t is directly proportional to t as shown in Eq. (8). Therefore,

qi� → tqi� ≡ qi�(t), (9)

qi� → tqi� ≡ qi�(t). (10)

The rescaled module exit- and enter-rates affect both the
module code length in Eq. (5) and the rate of use of all
codebooks. With (t) for the Markov time, the map equation
for Markov time t takes the form

L(M,t) = q�(t)H (Q) +
m∑

i=1

pi�(t)H [Pi(t)]. (11)

The simple flow rescaling enables efficient community
detection at different Markov times with the search algorithm
Infomap [16]. While Infomap is designed to minimize the
original map equation over possible network partitions, it can
be applied to the reconstructed network that corresponds to the
transition matrix for a given Markov time. This works for the
continuous-time transition matrix TC(t) in Eq. (4) [5], as well
as for its linearized form in Eq. (8). While reconstructing the
linearized transition matrix is much faster and does not densify
the network, further improvement is possible. In fact, the
reconstruction can be completely evaded. Since the self-links
only indirectly affect the map equation for Markov time t

in Eq. (11) by reducing the transition rates between nodes
and modules, exactly the same effect can be achieved by
directly rescaling Infomap’s internal representation of flows
along links by a factor t . This is the approach we take. Infomap
takes as input the original network and the Markov time t ,
calculates the ergodic node visit and transition rates, and then
rescales the transition rates by a factor t without any network
reconstruction at all.

032309-2



EFFICIENT COMMUNITY DETECTION OF NETWORK . . . PHYSICAL REVIEW E 93, 032309 (2016)

(a)

(b)

0 1 2 3 4 5
Markov time t

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
od

e
le

ng
th

(b
it
s)

27 modules

9 modules

3 modules

1 module

FIG. 1. The Markov time sets the scale of the flow modules. (a)
A schematic Sierpinski network with hierarchically nested modules.
(b) The code length for different partitions indicated in the network
as a function of the Markov time. The partition with the shortest code
length for a given Markov time is highlighted.

Figure 1 shows an example with a Sierpinski network.
For the shortest Markov times, putting every node in its own
module gives the shortest code length. For longer Markov
times, solutions with larger and larger modules give the
shortest code length.

The simple flow rescaling gives a slightly different encoding
of the dynamics than the continuous-time Markov process
[5]. The flow rescaling only operates on transitions between
nodes directly connected in the original network and does only
indirectly consider transitions between nodes connected by
multistep trajectories. Contrarily, the continuous-time Markov
process directly considers a spectrum of these trajectories.
Their lengths are given by the transition matrix power in the
expanded continuous-time transition matrix in Eq. (4),

TC(t) = e−t I + te−t TD + t2e−t

2
T 2

D + t3e−t

6
T 3

D + . . . , (12)

such that they are Poisson distributed with mean length t .
From a coding perspective, the continuous-time transition
matrix allows a random walker on a multistep journey on
the original network to move out of a module and back
again between two encodings without triggering any module
exit- and enter-codewords. In the flow rescaling approach,

10−2 10−1 100 101 102

0
1
2
3
4
5
6
7
8
9

C
od

e
le

ng
th

(b
it
s)

(a)

Rescaled flow

Continuous-time Markov process

Sampled Markov entropy

Markov entropy

10−2 10−1 100 101 102

0

100

200

300

400

500

600

N
um

b
er

of
m

od
ul

es

(a)

10−2 10−1 100 101 102

Markov time t

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

C
om

pr
es

si
on

ga
p

(b
it
s)

(a)

(a)

(b)

(c)

FIG. 2. Comparing flow rescaling with a continuous-time
Markov process. Panels (a)–(c) show the effect on a weighted,
undirected coauthorship network with 552 physicists [17]. Standard
deviations are smaller than the line width.

however, such moves will indeed be encoded. As a result, the
continuous-time Markov process allows flows to stay longer
within a given module and therefore typically gives smaller
modules and shorter description length. Figure 2 illustrates
the effects of the different dynamics on a weighted, undirected
coauthorship network with 552 physicists [17]. While the
flow rescaling gives longer code lengths especially for longer
Markov times [Fig. 2(a)], and somewhat larger modules for
the same Markov time [Fig. 2(b)], the overall patterns are the
same.

The network and problem at hand may set a natural Markov
time, but often the most appropriate Markov time is unknown.
Based on the rationale that good modular solutions should give
good compressions, Schaub et al. suggested to compare the
code length of the modular description by the map equation at
a given Markov time with the entropy rate of the corresponding
Markov process,

hC(t) = −
∑
αβ

pαTCαβ(t) log TCαβ(t), (13)

which sets the lower limit on the description length [5].
We use the same compression gap approach, but for better

032309-3



KHEIRKHAHZADEH, LANCICHINETTI, AND ROSVALL PHYSICAL REVIEW E 93, 032309 (2016)

performance instead obtain the entropy rates at different
Markov times by sampling random walks on the original
network. That is, we repeatedly sample start nodes propor-
tional to their ergodic visit-rates, and, for each start node,
repeatedly perform random walks of lengths sampled from
a Poisson distribution with expected length t . By averaging
over the entropy of the final node for each start node, we
can estimate the entropy rate of the continuous-time Markov
process without constructing the corresponding continuous-
time transition matrix TC(t). Note that we cannot use the
linearized transition matrix in Eq. (8), because the corre-
sponding entropy rate is only a good estimate for t < 1 and
does not converge to the entropy rate of the independent
and identically distributed process for long Markov times,
limt→∞ hC(t) = −∑

α pα log pα = H (P), which is also the
one-module solution of the map equation for any Markov time.
Figure 2(a) shows that the sampled estimate performs well and
practically overlaps with the Markov entropy obtained from
the continuous-time transition matrix. Schaub et al. looked
at the relative compression gap [5], but to avoid inflating
small differences for short Markov times, in Fig. 2(c) we
show the absolute compression gap, L(M,t) − hC(t). For this
coauthorship network, the compression gaps indicate a local
minimum just shorter than Markov time 2 for the rescaled
flow and a local quasiminimum just longer than Markov
time 2 for the continuous-time Markov process. Interestingly,
these Markov times correspond to about the same number
of modules, since the flow rescaling generates slightly larger
modules for the same Markov time.

Overall, the flow rescaling is in practice computationally
much more efficient than the continuous-time Markov process,
since the network must not be rebuilt for each Markov
time. The continuous-time Markov process generates dense
networks for long Markov times, which results in infeasible
solutions for large networks. Contrarily, the flow rescaling
has similar fast performance for all Markov times. However,
for networks so sparse that random fluctuations can cause
quenched modules [18], it can pay off to incorporate longer
trajectories. Then extending the linearized transition matrix
in Eq. (8) with quadratic terms from the continuous-time
transition matrix TC(t) in Eq. (4) can provide an efficient
compromise between the slower continuous-time Markov
process, which makes the network denser, and the faster flow
rescaling, which maintains the network density.

B. The map equation for bipartite networks

A complete projection of a bipartite network with primary
nodes and feature nodes into a unipartite network with only
primary node gives an overload of links already for moderately
dense networks [13]. Here we explore three ways to overcome
this problem for the map equation framework: projecting by
rescaling the Markov time, treating the network as unipartite,
and projecting by sampling important links.

Flow rescaling makes a projection effortless, because pro-
jecting a bipartite network into a unipartite network essentially
corresponds to a rescaling of the Markov time. With Markov
time 2, a random walker will take two steps between two
encodings such that the exit and enter rates according to

Eqs. (9) and (10) become

qi�(2) = 2qi�, (14)

qi�(2) = 2qi�. (15)

If such random walkers with a cycle of two are released on the
primary nodes, only the primary node visits will be encoded.
In this way, the map equation takes exactly the same form as
in Eq. (11) with t = 2,

L(M,2) = q�(2)H [Q(2)] +
m∑

i=1

pi�(2)H [Pi(2)], (16)

with the only difference that the visit rates of primary nodes
double and the visit rates of feature nodes become 0. Therefore,
with subscript p for primary nodes and f for features nodes,

pα,p(2) = 2pα(1), (17)

pα,f (2) = 0. (18)

Even if visits to feature nodes do not contribute to the code
length, the flow rates between modules depend on their module
assignments. Therefore, both primary nodes and feature nodes
are clustered. Since the flow rescaling treats movements in
and out of modules differently than with a projected and
fully rebuilt network as described above, the projection with
rescaled Markov time best approximates the full projection for
small flows between modules (see Fig. 3).

(a)

(b)

0.0 0.1 0.2 0.3 0.4 0.5
Relative out weight wout/w

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
od

e
le

ng
th

(b
it
s)

Unipartite, 2 modules

Unipartite, 1 module

Bipartite Markov, 2 modules

Bipartite Markov, 1 module

Full Projection, 2 modules

Full Projection, 1 module

Bipartite leap, 2 modules

Bipartite leap, 1 module

FIG. 3. Projecting bipartite networks corresponds to doubling
the Markov time and increases the scale of flow modules. (a) A
schematic bipartite network with link weight win between primary
nodes (circles) and feature nodes (squares) in the same community
and link weight wout between nodes in different communities. (b) The
code length for different bipartite dynamics and coding schemes as a
function of the relative out weight.

032309-4



EFFICIENT COMMUNITY DETECTION OF NETWORK . . . PHYSICAL REVIEW E 93, 032309 (2016)

A similar approach to doubling the Markov time is to
instead use random walkers that leap over every other node.
That is, the dynamics take place on the full network with
primary nodes and feature nodes as above, but only steps
from feature nodes to primary nodes are accounted for. By
rescaling the total visit rates to 1, the node visit rates take the
same form as in Eqs. (17) and (18), but the transition rates in
Eqs. (9) and (10) now depend on the relative amount of flow
that moves between modules from feature nodes to primary
nodes. For undirected networks, the flow is equal in both
directions such that the bipartite leap dynamics correspond to
Markov time t = 1 in Eqs. (9) and (10). That is, the bipartite
leap dynamics effectively correspond to the standard unipartite
dynamics in which the node type is ignored as shown in Fig. 3.
While only encoding primary nodes offsets the code length
compared to the unipartite dynamics, the compression gain
between different modular solutions remains exactly the same
for the schematic network in Fig. 3. In general, the difference is
so small that an approach based on the bipartite leap dynamics
is superfluous, and we will instead use the unipartite dynamics
when comparing different approaches.

The research question at hand will determine which
approach should be favored. In the example in Fig. 3, the
two approaches that correspond to dynamics with Markov
time 2, full projection and projection with rescaled Markov
time, favor the two-module solution until about 10% relative
out-weight. Therefore, they can work well for sparse networks
or interest in large-scale structures. Instead, the two approaches
that correspond to Markov time 1, the unipartite and bipartite
leap dynamics, favor the two-module solution until about 20%
relative out-weight. Therefore, they can work well for dense
networks or interest in small-scale structures.

With two methods that can work well at different scales,
we now turn to a fast projection approach based on sampling
of important links that resembles the method we used for
estimating Markov entropies above. It is an adaptive method
that can work well at a wider range of scales. Sampling of
important links works well in practice, because most links
in a weighted projection will carry redundant information
for community detection. Therefore, only the important and
nonredundant links must be sampled. Much like the Minhash
approach [19], we seek to identify similar nodes of one type.
In our case, nodes that are frequently visited in sequence by a
random walker that performs two-step dynamics on a bipartite
network. In detail, we associate each feature node with the top
X primary nodes selected by link weight, or randomly for ties
as in unweighted networks. For each primary node, we take
the top X primary nodes associated with each of its connected
feature node and include them in a candidate set. For each
node in the candidate set, we compute the two-step random
walk probability to go to other nodes also in the candidate set
and create links to the top Y nodes. For all experiments in this
paper, we used X = 1000 and Y = 10. For these choices, we
found that the sampling approach can be both fast and accurate
for dense as well as sparse networks.

III. RESULTS AND DISCUSSION

To compare the three methods, we tested their performance
on bipartite benchmark networks. To construct the bipartite

25 26 27 28 29 210 211

0.0
0.2
0.4
0.6
0.8
1.0

N
M

I

kin = 12

Fast projection
Bipartite
Unipartite

25 26 27 28 29 210 211

0.0
0.2
0.4
0.6
0.8
1.0

kin = 13

25 26 27 28 29 210 211

Feature nodes

0.0
0.2
0.4
0.6
0.8
1.0

N
M

I

kin = 14

25 26 27 28 29 210 211

Feature nodes

0.0
0.2
0.4
0.6
0.8
1.0

kin = 15

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b)

(c) (d)

FIG. 4. Fast projection performs well on both sparse and dense
bipartite benchmark networks. The performance of fast projection,
the bipartite dynamics, and the unipartite dynamics measured by the
normalized mutual information, NMI, as a function of the number of
feature nodes and the number of links between communities, kin = 12
in (a), 13 in (b), 14 in (c), and 15 in (d). Filled area represents standard
deviation.

benchmark networks, we built on the standard approach
with a generative model for unipartite networks [20]. We
assigned both primary nodes and feature nodes to communities
and then added k unweighted and undirected links between
each primary node and kin randomly chosen feature nodes
in the same community and kout = k − kin randomly chosen
feature nodes in other communities. Specifically, we used 32
communities, each with 32 primary nodes with average degree
16, and varied the number of links between communities and
the number of feature nodes for more or less sparse networks.

The bipartite benchmark test reveals the effect of dif-
ferent effective Markov times (Fig. 4). Standard unipartite
dynamics or the bipartite leap dynamics, which correspond to
Markov time 1, work well down to relatively high number
of links between communities as long as the number of
feature nodes is limited. With increasing number of feature
nodes, the network becomes sparser, and the the dynamics
generate quenched modules. The bipartite dynamics, which
approximates a projection of the network and corresponds
to Markov time 2, cannot resolve communities as accurately
as the unipartite approach for dense networks with high
number of links between communities (Fig. 4). On the
other hand, the bipartite dynamics can better handle sparse
networks with many feature nodes. Finally, fast projection
effectively adapts the Markov time and handles both dense
and sparse networks on par or better than the approaches with
fixed Markov times. Unless the research question calls for
a specific Markov time, fast projection stands out as a good
choice.

Finally, we applied the three different methods on four
real-world bipartite networks (see Table I). For each network
we report the number of primary and feature nodes and the
number of links. We applied both two-level and multilevel
community detection with the search algorithm Infomap [16].
In the first approach, we forced Infomap to find two-level
solutions, while in the second approach we let Infomap

032309-5



KHEIRKHAHZADEH, LANCICHINETTI, AND ROSVALL PHYSICAL REVIEW E 93, 032309 (2016)

TABLE I. Comparing two-level and multilevel community detection of unipartite dynamics, bipartite dynamics, and fast projection applied
to real-world bipartite networks. Modules for the multilevel solutions report the total number of modules across all levels. All result values are
reported with two significant figures.

arXiv collaboration 20 Newsgroups YouTube MovieLens

Primary nodes 16 726 17 856 94 238 6 040
Feature nodes 22 015 78 198 30 087 3 900
Links 58 595 1 873 331 293 360 1 000 209

Unipart. Bipart. F. proj. Unipart. Bipart. F. proj. Unipart. Bipart. F. proj. Unipart. Bipart. F. proj.

Two-level
Modules 3100 2200 2500 740 36 660 9500 7900 7100 250 1 35
NMI
Unipartite 1.00 1.00 1.00 1.00
Bipartite 0.91 1.00 0.04 1.00 0.59 1.00 0.00 1.00
Fast projection 0.94 0.92 1.00 0.08 0.00 1.00 0.77 0.57 1.00 0.00 0.00 1.00
Multilevel
Levels 6 5 6 2 2 4 5 3 4 2 1 2
Modules 7300 3100 4200 740 36 900 12 000 8000 8000 250 1 35
HNMI
Unipartite 1.00 1.00 1.00 1.00
Bipartite 0.66 1.00 0.04 1.00 0.25 1.00 0.00 1.00
Fast projection 0.66 0.58 1.00 0.02 0.00 1.00 0.59 0.23 1.00 0.00 0.00 1.00

find the multilevel solution with the optimal number of
nested levels for best compression of the dynamics. We
report the standard NMI for the two-level approach [21]
and the generalized NMI for the multilevel approach [22].
For the multilevel approach, we also report the number of
levels for the best solution as well as the total number
of modules across all levels. The real bipartite networks
include an author-paper network, arXiv collaboration [23];
a document-word network, 20 Newsgroups [24]; a user-group
network, YouTube [25]; and a user-movie network, MovieLens
[26]. All networks are popular for performing benchmark
experiments.

The comparison between the methods applied on real net-
works confirms the results from the synthetic benchmark tests:
unipartite dynamics reveal more and smaller modules than
bipartite dynamics because of the inherently shorter Markov
time of unipartite dynamics (Table I). Again, fast projection
effectively adapts its Markov time and the network determines
whether fast projection most resembles unipartite or bipartite
dynamics. For the 20 Newsgroups and MovieLens networks,
the NMI scores are low because the solutions of the unipartite
and bipartite dynamics basically have one dominating module
and many tiny modules. The two-level results carry over to
the multilevel solutions, and unipartite dynamics typically
give deeper solutions than bipartite dynamics. Overall, fast
projection adapts the effective Markov time and can handle
both sparser and denser networks.

IV. CONCLUSIONS

We introduced an efficient method to perform commu-
nity detection of network flows at different Markov times.
The method takes advantage of the information-theoretic
machinery of the map equation and handles projections
of bipartite networks as well. In synthetic and real-world
networks, we showed how modifying the Markov times
influences the size of the identified communities. Depending
on the network and question at hand, a shorter Markov time
with smaller communities in deeper multilevel structures or
longer Markov time with larger communities in shallower
multilevel structures may be more appropriate. For bipartite
networks, we also introduced a fast projection approach that
effectively adapts the Markov time for robust communities.
While current methods require expensive and often infeasible
network reconstructions, the introduced methods offer efficient
alternatives applicable to large networks.

We have made the code available in the Infomap software
package, which also includes efficient community detection
for varying Markov times of higher-order Markov processes
[16].

ACKNOWLEDGMENTS

M.R. was supported by the Swedish Research Council
Grant No. 2012-3729. We are grateful to Carl Bergstrom and
Renaud Lambiotte for helpful discussions.

[1] M. Rosvall and C. T. Bergstrom, Multilevel compression of
random walks on networks reveals hierarchical organization in
large integrated systems, PloS one 6, e18209 (2011).

[2] T. P. Peixoto, Hierarchical Block Structures and High-
Resolution Model Selection in Large Networks, Phys. Rev. X 4,
011047 (2014).

[3] J-C. Delvenne, S. N. Yaliraki, and M. Barahona, Stability of
graph communities across time scales, Proc. Natl. Acad. Sci.
USA 107, 12755 (2010).

[4] M. T. Schaub, J.-C. Delvenne, S. N. Yaliraki, M. Barahona et
al., Markov dynamics as a zooming lens for multiscale
community detection: non clique-like communities

032309-6

http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1103/PhysRevX.4.011047
http://dx.doi.org/10.1103/PhysRevX.4.011047
http://dx.doi.org/10.1103/PhysRevX.4.011047
http://dx.doi.org/10.1103/PhysRevX.4.011047
http://dx.doi.org/10.1073/pnas.0903215107
http://dx.doi.org/10.1073/pnas.0903215107
http://dx.doi.org/10.1073/pnas.0903215107
http://dx.doi.org/10.1073/pnas.0903215107


EFFICIENT COMMUNITY DETECTION OF NETWORK . . . PHYSICAL REVIEW E 93, 032309 (2016)

and the field-of-view limit, PloS one 7, e32210
(2012).

[5] M. T. Schaub, R. Lambiotte, and M. Barahona, Encoding
dynamics for multiscale community detection: Markov time
sweeping for the map equation, Phys. Rev. E 86, 026112 (2012).

[6] M. Rosvall and C. T. Bergstrom, Maps of random walks on
complex networks reveal community structure, Proc. Natl. Acad.
Sci. USA 105, 1118 (2008).

[7] M. J. Barber, Modularity and community detection in bipartite
networks, Phys. Rev. E 76, 066102 (2007).

[8] R. Guimerà, M. Sales-Pardo, and L. A. Nunes Amaral, Module
identification in bipartite and directed networks, Phys. Rev. E
76, 036102 (2007).

[9] M. Crampes and M. Plantié, A unified community detection,
visualization and analysis method, Adv. Complex. Syst. 17,
1450001 (2014).

[10] T. P. Peixoto, Parsimonious Module Inference in Large Net-
works, Phys. Rev. Lett. 110, 148701 (2013).

[11] D. B. Larremore, A. Clauset, and A. Z. Jacobs, Efficiently
inferring community structure in bipartite networks, Phys. Rev.
E 90, 012805 (2014).

[12] M. G. Everett and S. P. Borgatti, The dual-projection approach
for two-mode networks, Soc. Networks 35, 204 (2013).

[13] T. Alzahrani, K. J. Horadam, and S. Boztas, Community
detection in bipartite networks using random walks, in Complex
Networks V, Vol. 549, edited by P. Contucci, R. Menezes,
A. Omicini, and J. Poncela-Casasnovas (Springer International
Publishing, Switzerland, 2014), pp. 157–165.

[14] C. E. Shannon, A mathematical theory of communication, Bell
Syst. Tech. J. 27, 379 (1948).

[15] R. Lambiotte, J.-C. Delvenne, and M. Barahona, Random walks,
markov processes and the multiscale modular organization of
complex networks, IEEE Trans. Network Sci. Eng. 1, 76 (2014).

[16] D. Edler and M. Rosvall, The infomap software package (2016),
http://www.mapequation.org.

[17] A. V. Esquivel and M. Rosvall, Compression of Flow can Reveal
Overlapping-Module Organization in Networks, Phys. Rev. X
1, 021025 (2011).

[18] A. Lancichinetti and S. Fortunato, Community detection al-
gorithms: A comparative analysis, Phys. Rev. E 80, 056117
(2009).

[19] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
Min-wise independent permutations, J. Comput. Syst. Sci. 60,
630 (2000).

[20] M. Girvan and M. E. J. Newman, Community structure in social
and biological networks, Proc. Natl. Acad. Sci. USA 99, 7821
(2002).

[21] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas, Comparing
community structure identification, J. Stat. Mech. Theor. Exp.
(2005) P09008.

[22] J. I. Perotti, C. J. Tessone, and G. Caldarelli, Hierarchical mutual
information for the comparison of hierarchical community
structures in complex networks, Phys. Rev. E 92, 062825
(2015).

[23] M. E. J. Newman, The structure of scientific collaboration
networks, Proc. Natl. Acad. Sci. USA 98, 404 (2001).

[24] J. Rennie, 20 newsgroups data set (2005),
http://people.csail.mit.edu/jrennie/20Newsgroups/.

[25] A. Mislove, Youtube network dataset—konect
(2015), http://konect.uni-koblenz.de/networks/youtube-
groupmemberships.

[26] J. L. Herlocker, J. A. Konstan, Al Borchers, and J. Riedl, An
algorithmic framework for performing collaborative filtering,
in Proceedings of the 22nd Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (ACM, New York, 1999), pp. 230–237.

032309-7

http://dx.doi.org/10.1371/journal.pone.0032210
http://dx.doi.org/10.1371/journal.pone.0032210
http://dx.doi.org/10.1371/journal.pone.0032210
http://dx.doi.org/10.1371/journal.pone.0032210
http://dx.doi.org/10.1103/PhysRevE.86.026112
http://dx.doi.org/10.1103/PhysRevE.86.026112
http://dx.doi.org/10.1103/PhysRevE.86.026112
http://dx.doi.org/10.1103/PhysRevE.86.026112
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1103/PhysRevE.76.066102
http://dx.doi.org/10.1103/PhysRevE.76.066102
http://dx.doi.org/10.1103/PhysRevE.76.066102
http://dx.doi.org/10.1103/PhysRevE.76.066102
http://dx.doi.org/10.1103/PhysRevE.76.036102
http://dx.doi.org/10.1103/PhysRevE.76.036102
http://dx.doi.org/10.1103/PhysRevE.76.036102
http://dx.doi.org/10.1103/PhysRevE.76.036102
http://dx.doi.org/10.1142/S0219525914500015
http://dx.doi.org/10.1142/S0219525914500015
http://dx.doi.org/10.1142/S0219525914500015
http://dx.doi.org/10.1142/S0219525914500015
http://dx.doi.org/10.1103/PhysRevLett.110.148701
http://dx.doi.org/10.1103/PhysRevLett.110.148701
http://dx.doi.org/10.1103/PhysRevLett.110.148701
http://dx.doi.org/10.1103/PhysRevLett.110.148701
http://dx.doi.org/10.1103/PhysRevE.90.012805
http://dx.doi.org/10.1103/PhysRevE.90.012805
http://dx.doi.org/10.1103/PhysRevE.90.012805
http://dx.doi.org/10.1103/PhysRevE.90.012805
http://dx.doi.org/10.1016/j.socnet.2012.05.004
http://dx.doi.org/10.1016/j.socnet.2012.05.004
http://dx.doi.org/10.1016/j.socnet.2012.05.004
http://dx.doi.org/10.1016/j.socnet.2012.05.004
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/TNSE.2015.2391998
http://dx.doi.org/10.1109/TNSE.2015.2391998
http://dx.doi.org/10.1109/TNSE.2015.2391998
http://dx.doi.org/10.1109/TNSE.2015.2391998
http://www.mapequation.org
http://dx.doi.org/10.1103/PhysRevX.1.021025
http://dx.doi.org/10.1103/PhysRevX.1.021025
http://dx.doi.org/10.1103/PhysRevX.1.021025
http://dx.doi.org/10.1103/PhysRevX.1.021025
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1006/jcss.1999.1690
http://dx.doi.org/10.1006/jcss.1999.1690
http://dx.doi.org/10.1006/jcss.1999.1690
http://dx.doi.org/10.1006/jcss.1999.1690
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1103/PhysRevE.92.062825
http://dx.doi.org/10.1103/PhysRevE.92.062825
http://dx.doi.org/10.1103/PhysRevE.92.062825
http://dx.doi.org/10.1103/PhysRevE.92.062825
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1073/pnas.98.2.404
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://konect.uni-koblenz.de/networks/youtube-groupmemberships



